Thorium Use in Nuclear Power

Supathorn Phongikaroon, Ph.D., P.E.
Associate Professor
Department of Mechanical and Nuclear Engineering
Virginia Commonwealth University
Brief Bio

- **Education:**
 - NRC Postdoctoral Fellow at Naval Research Laboratory, Washington D.C., 2001 – 2004;
 - Ph.D. Chemical Engineering from University of Maryland, College Park (2001); and
 - B.S. Nuclear Engineering from University of Maryland, College Park, (1997).

- **Professional experience (teaching and conducting research in Nuclear Fuel Cycle since 2004):**
 - Associate Professor, Mechanical and Nuclear Engineering, Virginia Commonwealth University, 2014 - Present
 - Associate Professor, Chemical & Materials Engineering and Nuclear Engineering Program, University of Idaho, 2013 – 2014
 - Assistant Professor, University of Idaho, 2007 – 2013
 - Research Engineer, Idaho National Laboratory, 2004 – 2007

- Over 17 peer-reviewed publications on molten salt systems.
- Over 30 presentations at national and international conferences on molten salt systems.

- **Hobbies:**
 - Climbing,
 - Backpacking & Hiking,
 - Backcountry Skiing,
 - Swimming, Road biking, and running
China’s Energy Challenge—
Reaching 3000 GW in 2030 on electricity demand
(about 2 kW per person).

http://archive.dailycal.org/article.php?id=113056
August 9th, 2013

Primary Energy World Consumption

- **15 TW engine + 2% between 2012 – 2013**
 - ~ 2 kW/capita

Limited Fossil Resources
- Reserves/Production rate
 - Oil = 53 years left
 - Gas = 55 years left
 - Coal = 113 years left

BP Statistical review of World Energy 2014
Global Warming

- Atmospheric CO\textsubscript{2} level has been increasing sharply (compare to the past 15 million years):

http://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere
Air Pollution

- 54 billion U.S. $ in 2013 health care expenses—in Europe for burning coal.
- 1.2 Million premature deaths in China (2013) due to air pollution.

http://www.nytimes.com/2013/04/02/world/asia/air-pollution-linked-to-1-2-million-deaths-in-china.html?_r=0
http://www.huffingtonpost.com/2013/10/15/europe-air-pollution-wood-fires-diesel-cars_n_4099578.html
Innovation = Fundamental research + Applied research

Wind and Solar energy → contribution to the world energy by a factor 130 or more
- Not realistic → Space? Storage? Cost? Distribution?
- Idaho? Utah? Wyoming?

What about Nuclear?
- Energy R&D → Nuclear Fission must NOT be left behind
Existing Nuclear Commercial Power Reactors (13.8% World Wide/21.4% OECD)

The Organization for Economic Co-operation and Development (OECD) – 34 nations

Source: IAEA information & news reports
<table>
<thead>
<tr>
<th>Australia</th>
<th>Austria</th>
<th>Belgium</th>
<th>Canada</th>
<th>Chile</th>
<th>Czech Republic</th>
<th>Denmark</th>
<th>Estonia</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Germany</td>
<td>Greece</td>
<td>Hungary</td>
<td>Iceland</td>
<td>Ireland</td>
<td>Israël</td>
<td>Italy</td>
<td>Japan</td>
</tr>
<tr>
<td>Korea</td>
<td>Luxembourg</td>
<td>Mexico</td>
<td>Netherlands</td>
<td>New Zealand</td>
<td>Norway</td>
<td>Poland</td>
<td>Portugal</td>
<td>Slovak Republic</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Spain</td>
<td>Sweden</td>
<td>Switzerland</td>
<td>Turkey</td>
<td>United Kingdom</td>
<td>United States</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Reactor Designs and Current Operating Reactors in 30 Countries

Total Number of Reactors: 437

![Bar Chart](chart.png)

<table>
<thead>
<tr>
<th>Reactor Type</th>
<th>Reactor Type Descriptive Name</th>
<th>Number of Reactors</th>
<th>Total Net Electrical Capacity [MWe]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBR</td>
<td>Fast Breeder Reactor</td>
<td>2</td>
<td>580</td>
</tr>
<tr>
<td>GCR</td>
<td>Gas-Cooled, Graphite-Moderated Reactor</td>
<td>15</td>
<td>8045</td>
</tr>
<tr>
<td>LWGR</td>
<td>Light-Water-Cooled, Graphite-Moderated Reactor</td>
<td>15</td>
<td>10219</td>
</tr>
<tr>
<td>PHWR</td>
<td>Pressurized Heavy-Water-Moderated and Cooled Reactor</td>
<td>49</td>
<td>24592</td>
</tr>
<tr>
<td>BWR</td>
<td>Boiling Light-Water-Cooled and Moderated Reactor</td>
<td>81</td>
<td>75958</td>
</tr>
<tr>
<td>PWR</td>
<td>Pressurized Light-Water-Moderated and Cooled Reactor</td>
<td>275</td>
<td>255110</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>437</td>
<td>374504</td>
</tr>
</tbody>
</table>

http://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByType.aspx
Global Nuclear Construction Plans

- 71 reactors currently under construction in 15 countries (28 in China)
- 172 reactors planned in 26 countries over next 8-10 years
- 309 reactors proposed in 35 countries over next 15 years

~ Source: IAEA information & news reports
Present generation of uranium power plants must be reconsidered:

- Accidents (Chernobyl, TMI, Fukushima).
- Waste Management (Storage over < one million years, the only option developed so far).
- Proliferation of nuclear weapons (uranium =).
- Sustainability (< 100 yr at present rate).
Is it possible to make nuclear energy acceptable to society?
Discovered in 1828 by the Jons Jacob Berzelius, naming it after the Norse god of thunder and weather, Thor.
Natural thorium is isotopically pure, alpha decay with a $t_{1/2}$ of 14 billion (1.4×10^{10}) years (almost stable, no enrichment)

It undergoes natural disintegration and is eventually converted through a 10-step chain of isotopes to 208Pb, a stable isotope.

Th-232 and U-238 are fertile materials.

An absorption of a neutron by U-238 will generate Pu-239, so **U-233 is generated from Th-232**.

<table>
<thead>
<tr>
<th></th>
<th>Th-232</th>
<th>Th-230</th>
<th>U-238</th>
<th>U-235</th>
<th>U-234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>100%</td>
<td>ε</td>
<td>99.275%</td>
<td>0.720%</td>
<td>0.005%</td>
</tr>
<tr>
<td>σ_c barns</td>
<td>7.4</td>
<td>23.2</td>
<td>2.3</td>
<td>98.4</td>
<td>100.2</td>
</tr>
<tr>
<td>σ_f barns</td>
<td>ε</td>
<td>0.0012</td>
<td>-</td>
<td>584</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Thermal range (0.025 eV)
Fission Energy

Pa = Protactinium
Np = Neptunium

t_{1/2} = 1.6 \times 10^5 \text{ y}

Uranium chain

- 238U → 239U
 - β decay, t_{1/2} = 22.45 \text{ mn}
 - 239Np
 - β decay, t_{1/2} = 2.3 \text{ d}
 - 239Pu
 - t_{1/2} = 2.4 \times 10^4 \text{ y}

Thorium chain

- 232Th → 233Th
 - β decay, t_{1/2} = 22.3 \text{ mn}
 - 233Pa
 - β decay, t_{1/2} = 27 \text{ d}
 - 233U
 - t_{1/2} = 1.6 \times 10^5 \text{ y}

Neutron Capture

Factor 11!
Pa-233 can capture a neutron and the formation of U-233 is in competition with the formation of U-234.

\[^{232}\text{Th} + n \rightarrow ^{233}\text{Th} (22\text{m}) \rightarrow ^{233}\text{Pa} + n \rightarrow ^{234}\text{Pa} (6.7\text{h}) \rightarrow ^{234}\text{U} \]

U-233 has higher neutron yield per neutron absorbed (\(\eta\)) than either U-235 or Pu-239.

In a standard PWR,

\[\eta_{\text{U}^{233}} = 2.27 \quad \eta_{\text{U}^{235}} = 2.06 \quad \eta_{\text{Pu}^{239}} = 1.84 \]
Possible to Achieve Breeding in Today’s Reactors

- ^{233}U is an excellent fuel for breeder reactors.

$$\eta = \frac{\text{Fission neutrons produced}}{\text{Absorption of a thermal neutron}}$$

Ref: [10]
To generate U-233, fissile materials (such as U-235 or Pu-239) are required to provide the neutrons.

After being discharged from the reactor, used fuel can be reprocessed.

The minor actinides produced in a thorium/U-233 fuel cycle have much shorter decay chain than with U-238/U-235 or plutonium fuel cycles → good for waste management!

Fissile properties of U-233 implies that only a small amount of the metal can be used to prepare a nuclear weapon. The small amount of spontaneous neutron would permit to manufacture rather simple weapon types.

One of the principal drawbacks of the thorium cycle is U-232 production through various nuclear reaction on Th-232 and U-233.
The U-232 Decay Chain

First: $^{232}\text{Th}(n,2n) \rightarrow ^{231}\text{Th}(\beta) \rightarrow ^{231}\text{Pa}(n,\gamma) \rightarrow ^{232}\text{Pa}(\beta) \rightarrow ^{232}\text{U}$

Second: $^{232}\text{Th}(n,\gamma) \rightarrow ^{233}\text{Th}(\beta) \rightarrow ^{233}\text{Pa}(n,2n) \rightarrow ^{232}\text{Pa}(\beta) \rightarrow ^{232}\text{U}$

Third: $^{233}\text{U}(n,2n) \rightarrow ^{232}\text{U}$
Chemical Characteristics of ^{233}U

- U-233 is chemically identical to natural, depleted and enriched uranium.

- As a consequence of its shorter half-life, the U-233 isotope has a higher specific radioactivity than the naturally occurring isotopes of uranium.

- Certain radiation-induced chemical reactions are faster in uranium containing significant quantities of U-233.

- This is important in a long-term storage—the higher radiation levels of U-233 require that storage containers and that, through radiolysis, could degrade to form potentially explosive concentrations of hydrogen gas.
Often a by-product of mining for rare earths (lanthanides + scandium and yttrium), tin, coal and uranium tailings

Thorium dioxide (ThO₂) has the highest melting point (3300 °C compared to 2865 °C for UO₂) of all oxides and is one of the best refractory materials

Metallic thorium has a melting point of 1750 °C compared to 1130 °C for metallic uranium
Estimated World Thorium Resources

<table>
<thead>
<tr>
<th>Country</th>
<th>Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>846,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>632,000</td>
</tr>
<tr>
<td>Australia</td>
<td>595,000</td>
</tr>
<tr>
<td>USA</td>
<td>595,000</td>
</tr>
<tr>
<td>Egypt</td>
<td>380,000</td>
</tr>
<tr>
<td>Turkey</td>
<td>374,000</td>
</tr>
<tr>
<td>Venezuela</td>
<td>300,000</td>
</tr>
<tr>
<td>Canada</td>
<td>172,000</td>
</tr>
<tr>
<td>Russia</td>
<td>155,000</td>
</tr>
<tr>
<td>South Africa</td>
<td>148,000</td>
</tr>
<tr>
<td>China</td>
<td>100,000</td>
</tr>
<tr>
<td>Norway</td>
<td>87,000</td>
</tr>
<tr>
<td>Greenland</td>
<td>86,000</td>
</tr>
<tr>
<td>Finland</td>
<td>60,000</td>
</tr>
<tr>
<td>Sweden</td>
<td>50,000</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>50,000</td>
</tr>
<tr>
<td>Other countries</td>
<td>1,725,000</td>
</tr>
<tr>
<td>World total</td>
<td>6,355,000</td>
</tr>
</tbody>
</table>

Originally the rare earth ore monazite was mined for Thorium—to make gas mantles.

The rare earths were mostly a curiosity for many Chemists.

Thorium levels in Monazite ~3 to 20%

Monazite sample containing 2 to 3% of thorium mixed with rare earths (from the Steenkampskraal mine, South Africa-Trevor Blench)
Producing 1 GWe during one year will need 1.05 ton of thorium.

1 GW of thermal energy during one year requires only 0.453 ton of thorium.

This is equivalent to 6,790 ton of thorium per year for the entire world power consumption of 15×10^{12} W; this is based on average of 2 kW/person.

Current world population is ~7.12 billion.

Density of thorium = 11.7 g/cm³, it takes a cube of thorium of a side $a \approx 34$ cm to produce 1 GWth during one year.
Increasing fissile resources by breeding U-233 from thorium.

Improving fissile fuel utilization in thermal reactors.

Significantly reducing U-235 enrichment requirements

Decreasing production of plutonium and other transuranic (TRU) elements compared to the uranium fuel cycle.

Advantageous neutronic and physical properties of thorium-based fuel (e.g., higher thermal conductivity, higher melting point, better behavior under irradiation, higher burn-up achievable).
Thorium has a higher capture cross section than ^{238}U, and it takes longer to breed the fuel (^{233}U).

^{232}Th cannot be replaced ^{238}U right away in current reactors.
1950-1970, great enthusiasm and regardless of the costs, a large number of possible avenues for energy production with thorium were investigated, not only in the US and USSR, but also in Europe and Asia.

Thorium-based Elk River—Minnesota (1963) and Peach Bottom—Penn (1967) reactors were started only a few years after the ‘founding fathers’ of the two main reactor families of today, based on uranium fuel, PWR Shippingport—Penn (1957) and BWR Dresden– Illinois (1960).

Breeder demonstration was performed at Shippingport in the late 1970s and early 1980s using a U-233/thorium cycle.

This was the only US demonstration program using U-233 as the fissile seed material.

Although this demonstration was successful, success was only achieved at the high cost of a sophisticated core design, and by sacrificing reactor performance.
Different high temperature reactor prototypes in USA, Germany and UK (the Dragon OECD-EURATOM project) have shown similar capacities with an excellent behavior at very high coolant temperatures (> 1000 °C).

A molten salt reactor experiment has been operated rather successfully at Oak Ridge for some years.

The separation of U-233 and thorium is usually done by wet liquid-liquid extraction using the THOREX process at Oak Ridge.

Th and ThO2 dissolutions are not easy—additional hydrofluoric acid.

U-233 with U-232 presents problems for fabrication, increasing processing cost.

Reprocessed thorium also contains Th-228 (t_{1/2} = 1.9 y) and Th-234 (t_{1/2} = 24 d) preventing direct handling for some times.
Nuclear Reactors

<table>
<thead>
<tr>
<th>Country</th>
<th>Name</th>
<th>Type</th>
<th>Power (MW)</th>
<th>Startup date</th>
<th>Fuel</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>Indian Point 1</td>
<td>PWR</td>
<td>265<sup>e</sup></td>
<td>1962</td>
<td>ThO<sub>2</sub>–UO<sub>2</sub></td>
<td>Power includes 104 MWe from oil-fired superheater</td>
</tr>
<tr>
<td></td>
<td>Elk River</td>
<td>BWR</td>
<td>22<sup>e</sup></td>
<td>1964</td>
<td>ThO<sub>2</sub>–UO<sub>2</sub></td>
<td>Power includes 5 MWe from coal-fired superheater. Thorium loaded in the first core only</td>
</tr>
<tr>
<td></td>
<td>Shippingport</td>
<td>PWR</td>
<td>60<sup>e</sup></td>
<td>1957</td>
<td>ThO<sub>2</sub>–UO<sub>2</sub></td>
<td>Used both U-235 and plutonium as the initial fissile material. Successfully demonstrated thermal breeding using the 'seed/blanket' concept (Th/U-233)</td>
</tr>
<tr>
<td></td>
<td>Peach Bottom</td>
<td>HTR</td>
<td>40<sup>e</sup></td>
<td>1967</td>
<td>ThC<sub>2</sub>–U<sub>C</sub>⁄</td>
<td>Coated particle fuel in prismatic graphite blocks – Th/HEU</td>
</tr>
<tr>
<td></td>
<td>Fort St Vrain</td>
<td>HTR</td>
<td>330<sup>e</sup></td>
<td>1976</td>
<td>ThC<sub>2</sub>–U<sub>C</sub>⁄</td>
<td>Coated particle fuel in prismatic graphite blocks – Th/HEU</td>
</tr>
<tr>
<td></td>
<td>MSRE</td>
<td>MSR</td>
<td>10<sup>e</sup><sub>th</sub></td>
<td>1965</td>
<td>ThF<sub>4</sub>–UF<sub>4</sub></td>
<td>Operated with U-233 fuel since October 1968. No electricity production</td>
</tr>
<tr>
<td>UK</td>
<td>Dragon</td>
<td>HTR</td>
<td>20<sup>e</sup><sub>th</sub></td>
<td>1964</td>
<td>ThC<sub>2</sub>–U<sub>C</sub>⁄</td>
<td>Coated particle fuel. No electricity production. Many types of fuel irradiated</td>
</tr>
<tr>
<td>Germany</td>
<td>AVR</td>
<td>HTR</td>
<td>15<sup>e</sup></td>
<td>1967</td>
<td>ThC<sub>2</sub>–U<sub>C</sub>⁄</td>
<td>Coated particle fuel in pebbles. Maximum burn-up achieved: 150 GWe/t – Th/HEU</td>
</tr>
<tr>
<td></td>
<td>THTR</td>
<td>HTR</td>
<td>300<sup>e</sup></td>
<td>1985</td>
<td>ThC<sub>2</sub>–U<sub>C</sub>⁄</td>
<td>Coated particle fuel in pebbles. Maximum burn-up achieved: 150 GWe/t – Th/HEU</td>
</tr>
<tr>
<td>India</td>
<td>Lingen</td>
<td>BWR</td>
<td>60<sup>e</sup></td>
<td>1968</td>
<td>Th/Pu</td>
<td>Th/Pu was only loaded in some fuel test elements</td>
</tr>
<tr>
<td></td>
<td>Kakrapar (KAPS) 1–2</td>
<td>PHWR</td>
<td>200<sup>e</sup></td>
<td>1993/95</td>
<td>UO<sub>2</sub>–ThO<sub>2</sub></td>
<td>Fuel: 19-element bundles. 500 kg of Th loaded</td>
</tr>
<tr>
<td></td>
<td>Kaiga 1–2</td>
<td>PHWR</td>
<td>200<sup>e</sup></td>
<td>2000/03</td>
<td>UO<sub>2</sub>–ThO<sub>3</sub></td>
<td>Fuel: 19-element bundles. Th is used only for power flattening</td>
</tr>
<tr>
<td></td>
<td>Rajasthan (RAPS) 3–4</td>
<td>PHWR</td>
<td>200<sup>e</sup></td>
<td>2000</td>
<td>UO<sub>2</sub>–ThO<sub>4</sub></td>
<td>Fuel: 19-element bundles. Th is used only for power flattening</td>
</tr>
<tr>
<td></td>
<td>KAMINI</td>
<td>Neutron source</td>
<td>30 Kwe</td>
<td>–</td>
<td>U-233</td>
<td>Experimental reactor used for neutron radiography</td>
</tr>
</tbody>
</table>
The initial push for thorium fuel development was to provide an alternative fuel cycle in response to the nuclear growth.

Additional point is the abundance of thorium in comparison to uranium.

By the mid-1970, the uranium price reached $40/lb U₃O₈.

The good in-core neutronic and physical behavior of thorium fuel under irradiation.

A lower initial excess reactivity requirement (higher thermal conversion factor) of thorium-based cores using particular configurations.

The feasibility of different types of reactors based on Th fuels has been successfully demonstrated.
What factors killed These Stimulants?

1st Public Support:
- Public support for nuclear power dramatically declined following the TMI in 1979.
- Intensity amplified from Europe—Chernobyl, seven years later.

2nd U Price:
- Starting from 1980s, $ value remained low for over two decades.
- Nuclear weapon disarmament program (Megatons to Megawatts Program)—downblending.

3rd, the Ford and Carter Administration:
- End to commercial reprocessing the US so that it no longer had the capability to recover the fissile material from any non-military used fuel.
Proliferation concerns

- The reference option for implementing the thorium cycle was to deploy it with highly enriched uranium (HEU).
- Not only is HEU chemically separable from thorium (assuming seed and fertile material are combined), but some fuel designs completely separated the HEU driver fuel from the fertile thorium.
Development of a LWR proliferation-resistant fuel cycle (i.e. the Radkowsky Concept).

Nuclear renaissance and resource scarcity that it might entail.
- It was also stimulated by some of the same factors that were the main drivers for thorium cycle development in the 1950s and 1960s.

The potential for a low production of plutonium and minor actinides in thorium based fuel cycles.

Advanced reactor concepts based on thorium fuel cycles for future nuclear applications such as LWRs, HRs, Molten salt Reactors (MSRs), Accelerator-driven System (ADS).
A Revival ...

- Transmutation of minor actinides.
- Increase in price of uranium, which is closely tied to the perceived shortage of this material in light of a rapid growth of nuclear energy especially in Asian countries.
- Fukushima Accident.
- A new upswing of interest in thorium both within academic institutions and R&D organizations but more importantly by industry due to market conditions and new technologies.
Current Status in the World

- On-going studies: USA, Russia, China, Canada, Sweden, Norway, Japan, France, and India.

- European Union—fostering R&D actions for the thorium cycle.

- International Atomic Energy Agency (IAEA) – reports regularly on this topic.

- Most programs – fundamental studies. Exception to India.
- Limited indigenous uranium resources (1% of the world’s uranium resources).
- Difficulty in importing uranium because of political reasons.
- Six times more thorium than uranium.
- Utilization of thorium for large-scale energy production.
Due to small uranium resources, but the world #1 Thorium, India tries to incorporate it into front-end and back-end of the fuel cycle.

- Use heavy water reactor (CANDU) or LWR to produce plutonium
- Use Na cooled U-Pu fast reactors with a thorium blanket to breed 233U
- Reprocess blankets and manufacture 233U-Th fuel for advanced fast reactors or heavy water reactors.

India still faces issues in complexity (three technologies), the sustainability and nuclear waste management.

Example of Blanket design from Russian Voda Voda Energo Reactor
Thor Energy (The Norwegian Thorium Initiative) collaborates with Westinghouse to carry out thorium fuel tests in the Halden research reactor.

APRIL 2013

- 2 Rods 85%Th - 15%Pu pellets, ITU, Germany
- 2 Rods 7%Th – 93%UOX, IFE, Norway
- 1 Rod 65%Th – 35%UOX, IFE, Norway
- 1 UOX Reference rod
What are Other Studies?

- Use **thorium blankets** around reactors, to breed ^{233}U and introduce ^{233}U in fuel
 - $(n + ^{232}\text{Th} \rightarrow ^{233}\text{Th} \rightarrow ^{233}\text{Pa} \rightarrow ^{233}\text{U})$

- **Continuously move the fuel out** for having fresh fuel
 - Pebble bed reactors (once through)
 - Molten salt reactors (reprocessing on-line)

- **Accelerator Driven System** (ADS), providing an external neutron source
Pebble Bed Critical Reactors

- Proposed by Farrington Daniels at Oakridge, in the 1940s. Initial developments in Germany (AVR Julich), followed by THTR-300MW (1983-1989). New developments in South Africa, now in the U.S. and Turkey

- Presented as passively safe, as high temperature systems can be cooled by natural air convection

- Several issues:
 - No containment building
 - Uses flammable graphite as moderator
 - Produces more high level nuclear waste than current nuclear reactor designs
 - Relies heavily on pebble integrity and fuel handling
 - Water ingress, hard for reprocessing
This is clearly a technology that is concentrating interest: China, India, UK, US, Czech Republic, France, Switzerland

Pioneered at Oakridge in 1960 (MSRE, UF₄ – 7.4 MWth)

Advantages

- Liquid fuel, on-line reprocessing
- High temperature (500 – 600 °C)
- Passive cooling for decay heat removal

Severe issues: neutron emission, online chemistry failure, corrosion, licensing

Presently not using a fast neutron spectrum

There is a well focused and most ambitious effort in China (Shanghai Institute of Applied Physics)
Efforts have been made and the Chinese Government decided that the first fully-functioning thorium MSR reactor should be built within ten years, instead of 25 years as originally planned.
China Announces Thorium Energy Project

1 February, 2011

The Chinese Academy of Sciences announced that it will finance the development of a programme to develop a Thorium Fuelled Molten Salt Reactor (TFMSR). This is first of four “strategic leader in science and technology projects” that the Chinese Academy of Science will be supporting.

The Head of the Chinese TFMSR programme is Dr Jiang Mianheng, Graduate of Drexel University, with a PhD in electrical engineering. His father Jiang Zemin, was the former President of the People’s Republic of China from 1993 to 2003. This gives an indication of the importance the Chinese Leadership attach to the TFMSR programme.

This is a clear and important endorsement of the benefits of the TFMSR’s namely:

- Excellent nuclear and passive safety features,
- Greatly improved proliferation resistance,
- Significantly reduced high active waste production,
- Excellent resource utilisation as a result of the very high burn-up achieved,
- Overall economics that offer the prospect of being competitive with coal.

This is Dr. Jiang Mianheng, who is leading the Chinese thorium MSR project in the Chinese Academy of Sciences. Dr. Jiang is a graduate of Drexel University with a PhD in electrical engineering. His father is Jiang Zemin, former president of the People’s Republic of China from 1993 to 2003. He most recently toured Oak Ridge National Lab Fall of 2010 to see MSR.
Th-MSR versus LWRs

<table>
<thead>
<tr>
<th>Th-MSR Technology can be</th>
<th>Traditional LWRs are</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Economically and commercially viable</td>
<td>1. Not economically viable without massive government support, subsidies and the transfer of cost and risks to the public</td>
</tr>
<tr>
<td>2. Constructed on assembly line</td>
<td></td>
</tr>
<tr>
<td>3. Model-design permitting & Modular</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Th-MSR Technology will NOT</th>
<th>Traditional LWRs CAN & DO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blow up</td>
<td>1. Blow up</td>
</tr>
<tr>
<td>2. Melt down</td>
<td>2. Melt down</td>
</tr>
<tr>
<td>3. Cause widespread radiation</td>
<td>3. Cause widespread radiation</td>
</tr>
</tbody>
</table>

Th-MSR will help to eliminate the nuclear waste/used fuel issue! **Is it true?**
Other Key Factors

<table>
<thead>
<tr>
<th>Th-MSR Advantages</th>
<th>LWR Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Th-MSRs utilize nearly 100% of the available energy from the fuel—thus reducing nuclear waste/used fuel issues</td>
<td>1. LWRs (traditional design) use a fraction of available energy from its fuel—resulting in large amount of nuclear waste/used fuel issues</td>
</tr>
<tr>
<td>2. Safely operate at +700 °C</td>
<td>2. Operate at about 350 °C</td>
</tr>
<tr>
<td>3. Fuel/coolant is not under pressure</td>
<td>3. Coolant is under tremendous pressure</td>
</tr>
<tr>
<td>4. 100% passive safety</td>
<td>4. 100% mechanical safety</td>
</tr>
<tr>
<td>5. Low capital expenditure?</td>
<td>5. High capital expenditure?</td>
</tr>
</tbody>
</table>
ADS – $\rho < 1$ Approach

- A particle *accelerator* providing a neutron source
- A core in which both source neutrons and fission neutrons are working—restricted here to the case of a *moderator* allowing for a fast neutron spectrum
- **Physics** (Neutron production by spallation from the beam and Neutron transport and interaction in the core)
- **Physics with other ADS elements** (Cooling and Electric power production efficiency)

Non negligible contribution from the high energy tail (n,xn) reactions on Pb. See later the effect on k_s.
Mining and Milling

- No thorium-based fuel in industrial or commercial scale → no international market
- Thorium is currently being used for special metal alloys with magnesium, coating tungsten wire filaments for electronic equipment, high refractive glasses and catalyst for chemical industry, and medical applications
The NRC & IAEA set the threshold classification of SOURCE MATERIAL to 0.05% → Ended the use of Monazite by all ‘western’s rare earth producers.

Growth in Chinese production!

Ref: [11]
- Highest Chinese government controls the Rare Earth industry, including government funded programs.
- All programs were part of the public record.
- The U.S. ignores this ongoing situation, with Congress approving key technology transfers!

Ref: [11]
Low capture X-section of U-233 compared to U-235 and Pu-239 makes this an advantageous feature.

However, this beneficial is countered by:
- Losses of neutrons in Pa-233
- Relatively higher neutron capture X-section of Th-232 in comparison to U-238.

Contribution to fission by the build up of higher isotopes resulting from neutron captures starting from U-233, is less useful for energy production than the equivalent process starting from plutonium.

<table>
<thead>
<tr>
<th></th>
<th>U-233</th>
<th>U-235</th>
<th>Pu-239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-section (barns)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 2200 m/sec value</td>
<td>527</td>
<td>579</td>
<td>741</td>
</tr>
<tr>
<td>(2) Resonance integral</td>
<td>764</td>
<td>275</td>
<td>301</td>
</tr>
<tr>
<td>Capture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 2200 m/sec value</td>
<td>54</td>
<td>100</td>
<td>267</td>
</tr>
<tr>
<td>(2) Resonance integral</td>
<td>140</td>
<td>144</td>
<td>200</td>
</tr>
<tr>
<td>Neutron/fission (on average)</td>
<td>2.5</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Eta (1)</td>
<td>2.27</td>
<td>2.04</td>
<td>2.12</td>
</tr>
<tr>
<td>Eta (2)</td>
<td>2.11</td>
<td>1.56</td>
<td>1.74</td>
</tr>
</tbody>
</table>
The fission X-section of U-233 is considerably higher than the corresponding data for U-235 and Pu-239, and the capture X-section is lower.

U-233 appears to be attractive, however, the overall production of new fuel compared with fuel consumption depends on contributions to the neutron balance from other sources.

This is offset by the low fission contribution from the fertile Th-232 isotope as compared with the much larger contribution from U-238 in fuel cycles.

Th-232/U-233 fuel cycle proves to be relatively unattractive and fast reactors studies suggest that thorium cycle would give about 20% less bred fissile material than a U-238/plutonium cycle on a reasonably comparable basis.
Key Features/Problems—Back-End

- Reprocessing
 - Idea is to retrieve the fissile U-233.
 - Developed by ORNL, THOREX is a hydrometallurgical process.
 - Additional of hydrofluoric acid is necessary to improve the dissolution process, creating further corrosion issues.
 - Aluminum nitrate is added as a buffer increasing waste production.
 - THOREX has 50%-70% more vitrified waste than PUREX.
 - High temperature is required.
 - Recent interest in pyroprocessing technology (electrochemical separation) using molten salt technology.
Interim Storage and Waste Disposal

- High burn ups help reducing number of fuel assemblies.
- Less problematic than uranium because of the relative chemical inertness of thorium.
- Fuel oxidation is unlikely to be a concern during dry storage.
- ThO_2 is chemically stable and almost insoluble in ground water (U can be converted into the water-soluble uranyl cation UO_2^{2+}).
- Still produce radionuclides such as Pa-231, Th-229 and U-230 which have a long term radiological impact.
- But it is still less than for the standard U-Pu cycle for the same energy output.
Thorium is NOT a direct competitor to uranium.

Thorium is an attractive fuel cycle option for future development of nuclear energy:

- The enhancement of fuel resources by producing a new fissile isotope, U-233 (best for thermal neutrons).
- The abundance in many countries.
- The good in-core neutronic and physical behavior allowing to reach high burn-ups, high conversion factors compared to U-233 and even breeding in thermal reactors.
- It reduces the global inventory of long-lived minor actinides → reducing waste and storage issue.
- It will allows very efficient plutonium burning.
Successful Experience

- Gained knowledge from both test reactors and power reactors had been accomplished.
- Feasibility of the front-end fuel cycle technologies (mining, fuel fabrication) has been successfully demonstrated with generally rather old technologies.
- MOX fuel development has been accomplished.
Challenges

- Practical experience in the back-end of fuel cycle is lacking.
- Development of a large scale infrastructure is necessary for mining milling, fuel fabrication, transport and reprocessing of thorium-based fuel.
- To recover U-233, further fundamental studies are necessary in reprocessing.
- Shielded facility is necessary due to U-232 and its daughters.
Thorium-based fuel shows useful characteristics.

However, it does not appear sufficient to justify an industrial development in the short-term.

Its potential advantages are overshadowed by some real drawbacks.

In future, it has a potential in lower the radiotoxicity of radioactive waste to be disposed and, if U-233 is recycled, could reduce demand for uranium.

The possibility of achieving near breeding or even breeding conditions in thermal reactors yields an attractive feature of the thorium cycle.
References
