Class 1 What Determines Earth's Temperature?

OLLI

L809 Climate Change

January-February 2014

Robert C. Means

Robert.means@starpower.net

EARTH'S ENVIRONMENT

Earth and Other Planets

- About a thousand confirmed exoplanets
- Most within 1,000 light years of Earth compare Milky Way diameter of 100,000 light years
- Milky Way is one of more than 100 billion galaxies in the observable universe

Hubble Ultra-Deep Field Diameter: 3 arc-minutes = tenth diameter of full moon

OLLI Global Warming - Jan-Feb 14

Focus Shifts

- What are the planets' characteristics?
- Could they support life?
- Reference point: conditions that permitted or promoted life on Earth

The Layers

- Earth's Moon
- Earth's magnetic field
- The ozone layer
- Greenhouse gases

Earth's Moon

- High moon/planet mass ratio stabilizes Earth's rotational axis within range of less than 3°
- Previous view: Without moon, up to 90° variation and climate instability inconsistent with evolution of life
- Recent studies: Perhaps 20° 25° variation and life probably would have taken a different course
- Consistency with life versus consistency with life as it has in fact evolved

Earth's Magnetic Field

- Created by rotating molten iron outer core
- Shields atmosphere from most of charged particles of the solar wind
- Lack of magnetic field may have contributed to loss of Martian atmosphere

Ozone Layer

- Very thin stratospheric layer of ozone (O_3)
- Absorbs most powerful ultraviolet rays
- Effect of no ozone layer
 - Cancer
 - Genetic damage

OLLI Global Warming - Jan-Feb 14

Greenhouse Gases

- Absorb outgoing low-energy radiation and reemit part back to surface
- Result: Higher surface temperature
- Without greenhouse gases, Earth would not be within "habitable zone"

The "Habitable Zone"

• Assumes:

- Life needs liquid water
- Stellar radiation is the source of energy
- Determinants
 - Stellar radiation output and orbital radius
 - Atmospheric pressure
 - Greenhouse gases
- Carbon chauvinism?

The Sun's Habitable Zone

WHAT DETERMINES EARTH'S TEMPERATURE?

OLLI Global Warming - Jan-Feb 14

Basic Principles

- Temperature measures kinetic energy of system's molecules or atoms: <u>thermal energy</u>
- Energy gain ≠ energy loss: temperature change
- Gain = loss: equilibrium temperature

Applying the Principles to a Planet

- Receiving and losing thermal energy on Earth
 - Conduction
 - Convection
 - Radiation
- Planets: only radiation
- Imbalance between incoming and outgoing radiation: <u>radiative forcing</u>

Long ago in a galaxy far away Planet Keeling ejected from its system

- Heat from home star lost during journey
- Insignificant internal source of heat
- Dull black reflects nothing
- No atmosphere

Keeling Arrives

- Captured by Sun-like star in near-circular orbit of 150 million km radius
- Incoming solar radiation:
 - Cross-section: 1366 watts/meter²
 - Average for Keeling's surface: 342 watts/meter²
- Initial outgoing radiation: ~none
- Radiative forcing: 342 watts/meter²

Now What? The Path to Equilibrium

- Radiative forcing adds energy → Planet Keeling's temperature rises
- Higher temperature \rightarrow more outgoing radiation
- More outgoing radiation \rightarrow less radiative forcing
- No radiative forcing when incoming and outgoing radiation are equal: 279° K = 6° C

For the Curious

- Radiation = σT^4
 - Radiation is in w/m²
 - Temperature is in degrees Kelvin (centigrade + 273)
 - $\sigma = 5.67 \times 10^{-8}$ watts
- Task: Solve for T for $\sigma T^4 = 342$
- Some algebra: $T^4 = 342/(5.67 \times 10^{-8})$
- And more : $T = (342/5.67)^{1/4} \times (10^8)^{1/4} = 2.79 \times 100 = 279^{\circ} K = 6^{\circ} C$

The Path to Equilibrium

OLLI Global Warming - Jan-Feb 14

Equilibrium for Planet Keeling I

Good (19th century) Physics But Wrong Answer: Earth is Warmer than 6° C

Planet Keeling Mark II: Add Albedo

- Reflects 30% of solar radiation (0.3 albedo)
- Solar radiation now balanced by:
 - Keeling's own thermal radiation <u>plus</u>
 - Reflected solar radiation
- Equilibrium requires less thermal radiation → reached at lower temperature

The New Path to Equilibrium

OLLI Global Warming - Jan-Feb 14

Equilibrium for Planet Keeling II

The Model is More Realistic But the Answer is More Wrong: Earth Isn't a Snowball

THE GREENHOUSE EFFECT

OLLI Global Warming - Jan-Feb 14

The Missing Piece

- Fourier (1824): Atmosphere must trap heat
- But (1) what <u>part</u> of atmosphere does this and
 (2) how does it do it?
- Tyndall (1859) answers the first question
 - Oxygen and nitrogen (99% of atmosphere) are transparent to infrared radiation
 - Water, CO_2 and methane (CH_4) are not

Tyndall Experiment: Modern Version

Infrared Image of Face with Normal Atmosphere

Add CO₂ to Tube – And More and More

Why?

- For Tyndall: an empirical result
- Explanation requires 20th century physics
 - Electromagnetic radiation
 - Interaction of radiation and gas molecules

1. Electromagnetic Radiation

- Includes X-rays, visible light, thermal radiation, radio waves
- Behaves as particles (photons) and waves
- High/low-energy photons = short/long wavelength

Sun and Earth

- Source temperature determines photon energy/ wavelength
- Incoming solar radiation: high energy photons/short wavelength
- Outgoing radiation:
 - Reflected solar radiation: unchanged
 - Earth's thermal radiation: low energy photons/long wavelength

Solar Radiation And Earth's Thermal Radiation

2. Molecules and Greenhouse Gases

- Molecules can only occupy certain energy states
- Absorb a photon if its energy matches an interval between available energy states
- Greenhouse gases absorb low-energy photons of Earth's thermal radiation

The Process Continues

- Molecule drops back to original energy level
- Emits photon in random direction
- Further collisions repeat process
- Ends when photon escapes into space OR strikes Earth's surface

From Photon to Photon: Nothing Lost, Nothing Gained

Photon transfers energy to molecule

Reduction in energy embodied in photon

Molecular Bumper Cars

Space

Planet Keeling Mark III (preliminary edition)

- Add CO₂ to atmosphere
- Part of outgoing radiation re-radiated back to surface
- Higher surface temperature

The New Equilibrium

- Warmer surface → increased thermal radiation from surface
- Radiation escaping into space increases
- Warming continues until escaping thermal plus reflected solar equals incoming solar

Planet Keeling III (preliminary)

With Earth's CO₂ Concentration: Surface Temperature Higher But Not Enough Higher

Just Add Water

- Water vapor is a greenhouse gas: roughly doubles warming effect of CO₂
- But a <u>feedback</u>: atmospheric water vapor determined <u>by</u> temperature
- CO₂ is the control knob: without it, planet's water vapor would be surface ice

Feedbacks

- System change produces effect that increases or reduces the change
- Negative feedback: more CO₂ → more plant growth → absorbs some of CO₂
- Positive feedbacks for higher temperature
 - Reduced ice cover \rightarrow lower albedo
 - Release of arctic methane → increased greenhouse effect

Planet Keeling Mark III: Mostly CO₂ and Water Vapor

- Radiation into space now consists of:
 - Reflected solar radiation
 - Part of thermal radiation from Earth's surface
- Equilibrium requires making up thermal radiation trapped by greenhouse gases:
 - Thermal radiation from surface must increase
 - Requires higher temperature
- Equilibrium: 18° C or 65° F

Planet Keeling III

Equilibrium

- Equilibrium reached in all cases: Keeling I, II, III (preliminary) and III (final)
- Difference: temperature needed to reach it
- Lower if part of incoming solar is reflected
- Higher if only part of surface thermal radiation escapes into space

A Tale of Two Houses

- Two houses on dark side of Mercury identical except House A is insulated and House B is not.
- Only source of heat: identical 1000-watt heaters that run continuously
- At end of year , thermal radiation from each house is measured.

What is the relationship between two houses' radiation?

Radiation from A is greater?

Radiation from B is greater?

Equal radiation?

Two Houses

A > B? B > A? A = B?

OLLI Global Warming - Jan-Feb 14

THE DISCOVERY OF GLOBAL WARMING: THE BEGINNING

1890s Setting: What's the Question?

- 19th century uniformitarianism:
 - Scientific principles operating in the past are the same as those operating today
 - Today's world results from gradual change over long periods
- Second assumption challenged by evidence of past global glaciations
- Leads to question: What caused global <u>cooling</u>?

Svante Arrhenius (1896)

- Perhaps fewer volcanic eruptions: Less CO_2 \rightarrow cooler \rightarrow less water vapor \rightarrow still cooler
- To be complete, looks at the reverse: more eruptions → more CO₂ → more water vapor → warmer world

Also Quantifies Impact of Doubling CO₂

- Science: CO₂ and water vapor feedback
- Data: atmospheric absorption of thermal radiation from Langley experiments
- Tools: pen and paper
- Result: 5°-6° C warming within range of modern calculations
- Moral: Basic idea of global warming isn't complicated

But is there a problem? Two questions

- Is Arrhenius correct about effect of doubling CO₂?
 - Angstrom fils: atmosphere already saturated with CO₂
 - Wrong
- When (if ever) will CO₂ double?
 - Large emissions far in the future
 - Even large emissions would have limited effect on atmosphere: oceans would absorb most CO₂

Roger Revelle

- Grant to study ocean chemistry (1957)
 - Expects to find that ocean absorb CO₂
 - It does but (surprise) most pops back out again
- Eliminates <u>one</u> reason for putting problem far into the future
- But still expects slow growth in emissions

Now We Need Measurements

- Is atmospheric concentration of CO₂ rising?
- Are global temperatures rising?
- What is the <u>quantitative</u> relationship between CO₂ concentration and global temperature?

Review of Processes

- Radiative forcing changes average temperature of Earth system
- Under constant conditions, temperature change eliminates radiative forcing: a negative feedback
- Albedo reduces equilibrium temperature because reflected solar partly balances incoming solar
- CO₂ raises equilibrium temperature because not all thermal radiation escapes into space