Fundamentals of Nuclear Power
The Nuclear Fuel Cycle

Osher Lifelong Learning Institute
Spring 2012
Administrative Overhead

Topic for final (May 9) session?
“Once-Through” Fuel Cycle

- Enriching
- Fuel Fabrication
- Reactor
- Spent Fuel Storage
- Milling
- Exploration & Mining
- Geologic Disposal
Primary Energy Sources

- Fossil
 - Oil
 - Coal
 - Gas
- Solar
 - Hydroelectric
 - Wind
 - Biomass
 - Direct solar heat
 - Photovoltaics
- Non-solar "Renewable" – geothermal, waves, tides
- Nuclear
Secondary Energy Sources ("Carriers")

• Electricity

• Hydrogen – mainly from natural gas or electrolysis of water

• Alcohols – from wood or other plant material

• Oil and gas – from coal
Uranium Resources (RAR - $130/kg U)

World Total = 3296689 t

Canada 345200 t
USA 342000 t
Russia 131750 t
Kazakhstan 513897 t
Russia 131750 t
Mongolia 46200 t
Indonesia 42568 t (24)
Uzbekistan 76936 t
Jordan 30375 t
Ukraine 66706 t
Brazil 157700 t
Namibia 182556 t
South Africa 255593 t

(c) WISE Uranium Project

NA = Data not available

t = metric tonne
Coles Hill, VA

• 7th largest deposit in the world
Coles Hill, VA

• 7th largest deposit in the world

"There will be a dead zone with a 30 mile radius of the mine. Nothing will grow. Animals will die. The radiation genetically alters tissue. Animals will not be able to reproduce. We'll see malformed fetuses." -- Jack Dunavant, Southside Concerned Citizens
Mining Techniques

- Open cut or open pit (grade control usually achieved by measuring radioactivity as a surrogate for U concentration)
Mining Techniques

• Open cut or open pit (grade control usually achieved by measuring radioactivity as a surrogate for U concentration)
• Underground (grade control achieved as with open cut)
Mining Techniques

• Open cut or open pit (grade control usually achieved by measuring radioactivity as a surrogate for U concentration)
• Underground (grade control achieved as with open cut)
• In Situ Leach (ISL) – popular in US and Kazakhstan – acid (sulfuric, phosphoric, etc.) or alkaline agent
Uranium (U₃O₈) Prices 1972 on annual basis

- Average Australian export value A$/kg
- Euratom long-term price US$/lb
- Spot price US$/lb
U in ground → Various forms

Mining and Milling → U₃O₈, etc. (Yellowcake)

Conversion → UF₆

Enrichment → UF₆

Fabrication → UO₂

Natural U Rx

UF₆
UF_6

- Gas at $\sim 60^\circ\text{C}$
- Fluorine has only one isotope
- UF_6 exposed to moist air reacts with the water in the air to produce UO_2F_2 and HF, both of which are highly soluble and toxic.
Natural Uranium (0.711% U235)

Enriched Uranium (>1.0% U235)

Depleted Uranium (Tails) (<0.7% U235)
UF₆ Storage

• About 95% of depleted U produced to date is stored as depleted UF₆ in steel cylinders in open air yards close to enrichment plants.

• Each cylinder contains up to 12.7 tons of solid UF₆.

• In the U.S. alone, 560,000 tons of depleted UF₆ had accumulated by 1993.

• In 2005, 686,500 tons in 57,122 storage cylinders were located near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky

• Storage cylinders must be regularly inspected for signs of corrosion and leaks.

• The estimated life time of the steel cylinders is measured in decades.
Gaseous Diffusion

- Principal operating cost is electrical power required
- 1950s Oak Ridge, Portsmouth, OH and Paducah, KY plants
- Only US plant operating today is USEC's Paducah.
 - Transferred to private sector 1998
 - Capacity 8×10^6 SWU/y. US reactors need 12.7×10^6 SWU/y.
 - Expected to close once three new plants begin operation by 2020.
- 2009 – Russia's Tenex contracts with US utilities for enrichment services starting about 2014
U238 is heavier and collects on the outside walls (Depleted/Tails)

U235 is lighter and collects in the center (Enriched)

Feed to Next Stage
Centrifuges

9x10^6 SWU/y capacity plant:

- 90,000 to 100,000 centrifuges
- Requires high reliability (if mean time to failure is 3 y per unit \rightarrow 90 machine failures per day)
- Speeds up to 600 m/sec \rightarrow > 200,000 g
Stuxnet Worm

• A computer virus that appears to have been designed specifically to target Iran’s centrifuge machines so that they spin out of control.
• In November, 2010, Iran admitted that their centrifuges suffered partial sabotage by a computer virus
• U.S. or Israel seen as possible developers of Stuxnet—both governments denied responsibility.
Economics

- Gaseous Diffusion 2,500 kWh/SWU
- Centrifuge 50 kWh/SWU
- Laser ?

Estimated Trend

<table>
<thead>
<tr>
<th>Supply Source</th>
<th>2007</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion</td>
<td>25%</td>
<td>0</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>65%</td>
<td>93%</td>
</tr>
<tr>
<td>Laser</td>
<td>0</td>
<td>3%</td>
</tr>
<tr>
<td>HEU ex weapons</td>
<td>10%</td>
<td>4%</td>
</tr>
</tbody>
</table>
World Enrichment Capacity – Operational and Planned (1000 SWU/y)

<table>
<thead>
<tr>
<th>Country</th>
<th>2005</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>10,800</td>
<td>7,000</td>
</tr>
<tr>
<td>Germany-Holland-UK</td>
<td>8,100</td>
<td>12,200</td>
</tr>
<tr>
<td>Japan</td>
<td>150</td>
<td>750</td>
</tr>
<tr>
<td>USA (USEC Paducah)</td>
<td>11,300</td>
<td>3,800</td>
</tr>
<tr>
<td>USA (Urenco, NM)</td>
<td>0</td>
<td>5,900</td>
</tr>
<tr>
<td>USA (Areva, ID)</td>
<td>0</td>
<td>>1,000</td>
</tr>
<tr>
<td>Russia</td>
<td>20,000</td>
<td>33,000</td>
</tr>
<tr>
<td>China</td>
<td>1,000</td>
<td>3,300</td>
</tr>
</tbody>
</table>
SOURCE ENERGY EQUIVALENTS

1 Uranium Fuel Pellet, without being reprocessed and recycled, has about as much energy available in today’s light water reactor as...

3 Barrels of Oil (42 gal. each)
1 Ton of Coal
17,000 Cubic Feet of Natural Gas
Once Through Nuclear Fuel Cycle
Coal vs. Nuclear Waste Comparison

• Coal-primary waste output
 – 400+ tons of ash per day
 – 35,000 tons of CO$_2$ per day
 – 250 tons of SO$_2$ per day
 – 20 tons of NO$_x$ per day

• Nuclear-primary waste output
 – 300 m3 low level and mixed waste per YEAR
 – 25 tons worth of radioactive spent nuclear fuel assemblies per YEAR
Coal-Fired Plant

• 1000 MWe coal-fired plant burns 10,000 tons of fuel (110 rail cars) per day
• 5% of burned coal \rightarrow ash
• In mass terms, 20,000 times more coal is needed than U.
Reaction in standard UO₂ fuel

U-235 4%
U-238 96%
Pu 3%
U-235 1%
U-238 93%

Fission Products 5%
Pu 1%
65% fissile Pu to MOX
Waste
Reprocessed U for recycle

Basis: 45,000 MWd/t burn-up, ignores minor actinides
Reaction in MOX fuel

Pu (65% fissile) 7%

Fission Products 5%

U-238 93%

Pu (55% fissile) 5%

Pu 3%

Fission Products 5%

U-238 90%

3% 2% 4% 1%

Basis: 45,000 MWd/t burn-up, ignores minor actinides
Nuclear Cask Crash Tests

http://www.youtube.com/watch?feature=player_detailpage&v=1mHtOW-OB04#t=9s
Sandia National Laboratory Test
Sandia National Laboratory Test
F-4 Containment Wall Test - 1988
Complete Nuclear Fuel Cycle
• Once-through fuel cycle uses only 5% of energy in the fuel.
• Once-through fuel cycle uses only 5% of energy in the fuel.
• Of 290,000 t of used fuel produced over 50 yr, 90,000 has been recycled.
• Once-through fuel cycle uses only 5% of energy in the fuel.
• Of 290,000 t of used fuel produced over 50 yr, 90,000 has been recycled.
• France Cap la Hague reprocessing facility capacity = 1,700 t/yr.
• Once-through fuel cycle uses only 5% of energy in the fuel.
• Of 290,000 t of used fuel produced over 50 yr, 90,000 has been recycled.
• France Cap la Hague reprocessing facility capacity = 1,700 t/yr.
• 22 of 59 French reactors modified to use recycled fuel.
• Once-through fuel cycle uses only 5% of energy in the fuel.
• Of 290,000 t of used fuel produced over 50 yr, 90,000 has been recycled.
• France Cap la Hague reprocessing facility capacity = 1,700 t/yr.
• 22 of 59 French reactors modified to use recycled fuel.
Although US ban on recycling was rationalized in terms of preventing nuclear proliferation, there was no ban on the US military manufacturing weapons-grade Pu.
• Although US ban on recycling was rationalized in terms of preventing nuclear proliferation, there was no ban on the US military manufacturing weapons-grade Pu.
• Present economics do not favor recycling.
• Although US ban on recycling was rationalized in terms of preventing nuclear proliferation, there was no ban on the US military manufacturing weapons-grade Pu.

• Present economics do not favor recycling.

• After 5 to 10 years in spent fuel pool, fuel can be moved to dry cask storage.
• Although US ban on recycling was rationalized in terms of preventing nuclear proliferation, there was no ban on the US military manufacturing weapons-grade Pu.
• Present economics do not favor recycling.
• After 5 to 10 years in spent fuel pool, fuel can be moved to dry cask storage.
• 50 years of US used fuel would occupy football field 22 ft deep. If recycled, its waste would occupy football field 9 inches deep.
Thorium

• Insignificant production of long-lived minor actinides compared to uranium

• Proliferation resistance due to hard gamma emitters in U233
Advantages of Thorium (cont.)

• Since U233 has lower mass # compared to U235 and U238, amount of higher actinides (Np, Pu, Am, Cm) produced per unit of energy generated is insignificant compared to uranium-based fuels.

• Plutonium is completely absent from thorium fueled reactor waste.
(Reasonably assured and inferred resources recoverable at up to $80/kg)

<table>
<thead>
<tr>
<th>Country</th>
<th>Tonnes</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>489,000</td>
<td>19</td>
</tr>
<tr>
<td>USA</td>
<td>400,000</td>
<td>15</td>
</tr>
<tr>
<td>Turkey</td>
<td>344,000</td>
<td>13</td>
</tr>
<tr>
<td>India</td>
<td>319,000</td>
<td>12</td>
</tr>
<tr>
<td>Venezuela</td>
<td>300,000</td>
<td>12</td>
</tr>
<tr>
<td>Brazil</td>
<td>302,000</td>
<td>12</td>
</tr>
<tr>
<td>Norway</td>
<td>132,000</td>
<td>5</td>
</tr>
<tr>
<td>Egypt</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Russia</td>
<td>75,000</td>
<td>3</td>
</tr>
<tr>
<td>Greenland</td>
<td>54,000</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>44,000</td>
<td>2</td>
</tr>
<tr>
<td>South Africa</td>
<td>18,000</td>
<td>1</td>
</tr>
<tr>
<td>Other countries</td>
<td>33,000</td>
<td>1</td>
</tr>
<tr>
<td>World total</td>
<td>2,610,000</td>
<td>-</td>
</tr>
</tbody>
</table>
Present Energy Demand and Supply

- Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
Present Energy Demand and Supply

• Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
• Oil production peaked in 1979 and did not return to that level until 1994.
Present Energy Demand and Supply

• Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
• Oil production peaked in 1979 and did not return to that level until 1994.
• Oil consumption is now twice the rate of discovery.
Present Energy Demand and Supply

- Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
- Oil production peaked in 1979 and did not return to that level until 1994.
- Oil consumption is now twice the rate of discovery.
- Transportation of LNG consumes up to 30% of it.
Present Energy Demand and Supply

- Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
- Oil production peaked in 1979 and did not return to that level until 1994.
- Oil consumption is now twice the rate of discovery.
- Transportation of LNG consumes up to 30% of it.
- 1/3 of world’s population does not have access to electricity supply, and another 1/3 does not enjoy reliable supply.
Present Energy Demand and Supply

- Typical US household wired for 24 kW (120 V x 200 A), peak ~15 kW (electric stove/dryer ~ 5 kW each)
- Oil production peaked in 1979 and did not return to that level until 1994.
- Oil consumption is now twice the rate of discovery.
- Transportation of LNG consumes up to 30% of it.
- 1/3 of world’s population does not have access to electricity supply, and another 1/3 does not enjoy reliable supply.
- Electricity demand growing faster than overall energy demand.
Economics

• **Green** is taken to mean:
 – “acceptable” environmental impact, and
 – sustainable,
Economics

- **Green** is taken to mean:
 - “acceptable” environmental impact, and
 - sustainable,
- Being **green** is typically associated with an acceptable degree of environmental risk. The economic side of the equation is typically distorted or ignored.
Economics

• **Green** is taken to mean:
 – “acceptable” environmental impact, and
 – sustainable,

• Being **green** is typically associated with an acceptable degree of environmental risk. The economic side of the equation is typically distorted or ignored.

• **Green** is a relative, not an absolute.
Economics

- **Green** is taken to mean:
 - “acceptable” environmental impact, and
 - sustainable.
- Being **green** is typically associated with an acceptable degree of environmental risk. The economic side of the equation is typically distorted or ignored.
- **Green** is a relative, not an absolute.
- All energy sources have advantages and disadvantages.
Economics (cont.)

- All energy sources impact the environment, and none are indefinitely sustainable.
Economics (cont.)

- All energy sources impact the environment, and none are indefinitely sustainable.
- An energy source that is “economically competitive” does not require taxpayer subsidies.
Economics (cont.)

- All energy sources impact the environment, and none are indefinitely sustainable.
- An energy sources that is “economically competitive” does not require taxpayer subsidies.
- *negative externalities* – costs of production that are shifted to non-producers; e.g., factory air pollution.
Economics (cont.)

• Although it is often stated that today it is “cheaper” to produce electricity using natural gas than uranium, the comparison ignores the greater negative externalities of natural gas version uranium.
Economics (cont.)

• Although it is often stated that today it is “cheaper” to produce electricity using natural gas than uranium, the comparison ignores the greater negative externalities of natural gas version uranium.

• Nuclear is the only energy source wherein the industry accounts for and is held responsible for all associated costs.
Green Energy

• *Small Is Beautiful: Economics As If People Mattered* – E. F. Schumacher, 1973 (associate of Keynes and Galbraith)

• US average solar flux \(\approx 200 \text{ W/m}^2 \)

• Wind farm – 1000 MWe \(\approx 600 \text{ mi}^2 \) (25% efficiency assumed)
• Nuclear less costly than renewables.
• Equivalent solar plant requires
 – 15×concrete
 – 75×steel
 – 2,530×land
Rancho Seco

- Nuclear plant 1975-1989, 913 MWe, 39% capacity factor, closed by public referendum

- 2 MWt (?) solar plant (PV1 and PV2)
The set came with four types of uranium ore, a beta-alpha source (Pb-210), a pure beta source (Ru-106), a gamma source (Zn-65?), a spinthariscope, a cloud chamber with its own short-lived alpha source (Po-210), an electroscope, a geiger counter, a manual, a comic book (Dagwood Splits the Atom) and a government manual "Prospecting for Uranium."
The Shoreham Saga

• 820 MWe BWR built by Long Island Lighting Company (LILCO)
The Shoreham Saga

- 820 MWe BWR built by Long Island Lighting Company (LILCO)
- Construction permit delayed 3 years by intervenors, including a total imposter claiming to be an expert with a Ph.D. and an M.D.
The Shoreham Saga

- 820 MWe BWR built by Long Island Lighting Company (LILCO)
- Construction permit delayed 3 years by intervenors, including a total imposter claiming to be an expert with a Ph.D. and an M.D.
- 1973-1984 construction
- 1985-1989 low power testing
The Shoreham Saga

- 820 MWe BWR built by Long Island Lighting Company (LILCO)
- Construction permit delayed 3 years by intervenors, including a total imposter claiming to be an expert with a Ph.D. and an M.D.
- 1973-1984 construction
- 1985-1989 low power testing
- Once completed, officials in Suffolk County refused to cooperate with emergency response exercise, making it impossible to comply with NRC requirement.
• NRC finally issued operating license claiming that in the even of an actual accident, officials would cooperate.
• NRC finally issued operating license claiming that in the even of an actual accident, officials would cooperate.
• Mario Cuomo intervenes.
• 1989 – LILCO agrees not to operate the plant with most of the $6 billion cost being passed on to Long Island residents.
• NRC finally issued operating license claiming that in the even of an actual accident, officials *would* cooperate.
• Mario Cuomo intervenes.
• 1989 – LILCO agrees not to operate the plant with most of the $6 billion cost being passed on to Long Island residents.
• State of New York buys plant for $1. Decommissioned in 1996 at cost of $186 million.
• NRC finally issued operating license claiming that in the even of an actual accident, officials would cooperate.
• Mario Cuomo intervenes.
• 1989 – LILCO agrees not to operate the plant with most of the $6 billion cost being passed on to Long Island residents.
• State of New York buys plant for $1. Decommissioned in 1996 at cost of $186 million.
• 1998 – State takes over LILCO, now the Long Island Power Authority.
• NRC finally issued operating license claiming that in the even of an actual accident, officials *would* cooperate.
• Mario Cuomo intervenes.
• 1989 – LILCO agrees not to operate the plant with most of the $6 billion cost being passed on to Long Island residents.
• State of New York buys plant for $1. Decommissioned in 1996 at cost of $186 million.
• 1998 – State takes over LILCO, now the Long Island Power Authority.
• Total amount of commercial power generated by Shoreham = **ZERO**