

I. Productivity Growth in Agriculture

- What it is and why it matters
- From the particular to the aggregate
- Drivers: innovations and diffusion

Why Care About Agricultural Productivity?

1935 120 million Americans 1200 million acres of farmland 412 million acres of cropland **2010** 300 million Americans 920 million acres of farmland 422 million acres of cropland

2030

Chinese & Indian Growth, and dietary transition... Implies greatly expanded demand for meat and feed grains And for crops used for fuel Will prices go up? Will we wreck the environment?

II. The Organization of Farming: Three Big Facts

- Production is shifting to larger farms
- Most large farms are small family businesses
- Farms are more specialized and more complex businesses than they used to be

US Farm Structure, 1982-2007

of Sales	Market Value		F	
)07 \$)	(billions of 2)	Farms		
2007	1982	2007	1982	
297	189	2,204,793	2,240,976	Total
lass-	d sales, by sales c	Sales Class		
0.9	1.8	59.8	42.6	Less than \$10,000
14.2	40.8	30.7	50.8	\$10,000-\$249,999
25.7	30.0	7.0	5.9	\$250,000-\$999,999
59.2	27.4	2.5	0.7	\$1,000,000 or more
100.0	100.0	100.0	100.0	All
))	diusted for inflatio	lollars (that is, a	All estimates are in 2007 of
		- <u>j</u>	,	
EDC	us of Agriculture	tics Service, Cens	gricultural Statis	Source: USDA National Ag
	m) us of Agriculture	djusted for inflatio	lollars (that is, a gricultural Statis	All estimates are in 2007 of Source: USDA National A

Some specifics of the size shift...

- In 1987, the average milk cow was on a farm with 80 milk cows in the herd...
 - By 2007, the average was 570 cows
- In 1987, the average bushel of wheat came from a farm that harvested 404 acres of wheat...
 - By 2007, the average was 910 acres
- In 1987, the average head of lettuce came from a farm that harvested 949 acres of lettuce.
 By 2007, the average was 1,815 acres

So Where Is Corporate Agribusiness?

- As production coordinators/integrators
 - Hogs, poultry, some fruits and vegetables
 - Provide inputs to contract growers
- As input producers
 - Seeds and chemicals; equipment; animal genetics
- As product buyers
 - Processors, retailers, wholesalers

Farms Are More Specialized

- Crop operations
 - Usually, 2-4 crops, livestock rare
- Livestock operations
 - Some are livestock only
 - Most still grow corn & grasses (feed)
- Many also specialize in production stages
 - Crops: hire custom service providers
 - Livestock: one stage on a farm

Farms Can Be Complex Businesses: Capital Requirements in Farming
Land

Good Iowa cropland is \$4000/acre

Equipment

\$250,000-\$500,000 for harvester or sprayer

Housing

4 house GA broiler complex: \$870,000

Breeding livestock

High quality milking cow in PA: \$1500

How Do Farmers Assemble Assets?

- Rent them
 - 50-60% of cropland is rented
 - Plus equipment, housing, & livestock leases
- Hire them
 - Custom service providers
 - Production contracts (for farmers' growing services)
- Borrow and purchase (debt is important)
- Bring in equity providers

Managing Risks is Really Important

- For marketing and revenues
 - Hedging directly, and through contracts & cash commitments, storage, and diversification
- For production practices
 - Choose chemicals, feeding, seeding to minimize risks of crop failure
- For politics
 - Farmers organize, for risk management and for income enhancement

- What do farmers need to provide?
- How do they provide it?
- I'm going to focus on a few examples

An Example: Genetically Engineered (GE) Seeds

Percent of acres planted with GE seeds

Crop	1996	2010
Corn	4	86
Cotton	20	93
Soybeans	8	93

GE: seeds that have had a gene from another plant species inserted in them.

What do GE seeds do? Pest resistant (Bt) and herbicide tolerant (HT) Reduce pesticide use Shifts herbicide use One application, less toxic Save farm operator time, as well as expense Farm more acres? Creates weed resistance? But resistance ought to be managed Allows for conservation tillage

What's conservation tillage? Reduced tillage (up to no-till) to: Retain residues from previous crops Reduce soil erosion Limit run-off (of chemicals and soil) Improve soil quality How are GE seeds tied to conservation tillage? No-till goes from 20 to 65 million acres as GE crops expand

Why Limit Run-Off?

- Chemical pesticides & fertilizers; manure
 - Excess N, P, K: that not taken up by plants can reduce water quality
 - If volatilized, can reduce air quality
 - Manure can also contain pathogens
 - Pesticides contain toxics
 - And runoff carries topsoil off as well

So How Do You Limit Run-Off?

- Seeds and no-till were one example
- Equipment
 - Precision ag to focus/reduce chem applications
- Field and crop management
 - Rotations to limit chemical applications
 - Stripping & contouring to limit erosion & runoff
- Land investment
 - Terracing & tiling--drainage investments

Another Example: Irrigation on the Farm

- Here's the basics:
 - 16 percent of harvested U.S. cropland is irrigated
 - But irrigated acreage generates nearly half of the value of all crops sold
 - And agriculture accounts for over 80 percent of water consumed in U.S.
 - Major interest in conservation & efficiency

To Sum Up...

- Farmers use chemicals, seed genetics, equipment, capital investment, and management to protect crops and raise production...
- ...while confronting environmental risks

Some Background

- Broiler chickens
 - 1955: 73 days to produce a chicken, at 2.85 pounds of feed for each pound of meat.
 - 2006: 35 days, and feed conversion is 1.85
- Market hogs
 - 1992: feed conversion is 3.83 (lb. feed per lb. gain)
 - -2004: feed conversion is 2.65
- Dairy manure
 - 1950: 250 million lbs/day
 - 2000: 123 million lbs/day

How Does This Happen?

- Breeding
- Feed and feed formulations
- Housing
 - Comfort, sanitation, and climate controls

This is Industrial Livestock Production: What are the Problems?

- Uniformity and taste?
- Antibiotics
 - Widely used in beef, pork, and poultry
 - Treatment, prevention, and growth promotion
 - Does this contribute to resistance and health risks?
- Manure:
 - Less per pound of meat, but it's all in one pla
 - What are the environmental and health risks

2400 sows birth 50,000 pigs each year, which are then raised on contract farms

Manure: What Can Be Done?

- Expanding Federal and State manure regulations
 - Governing storage and land application
- Creates expanded interest in:
 - Feed & breeding alternatives to minimize wastes
 - Expanded land application
 - Energy applications

What's Happening with Animal Antibiotics?

- Statutory proposals, retailer pressure, and regulatory shifts
- The science is very complicated...
- But I see efforts to reduce feeding antibiotics
 - Development of vaccines
 - Sanitation and testing procedures
 - Feed formulations

Technology Summary

- There's a lot of ways to produce most commodities
- Production can generate significant social costs
 Environmental & public health risks
- How do we limit risks and feed the world?
 - When do farmers have the right incentives?
 - When do we need to regulate farm practices?

U.S. Structural Change: Livestock

The midpoint farm size: half of production is on larger farms

Livestock	1987	2007	
	Herd size		
Dairy	80	570	
	Head Removed		
Broilers	300,000	681,600	
Hogs	1,200	30,000	
Fattened Cattle	17,532	35,000	
Cattle, <500 lbs	50	128	

Source: USDA National Agricultural Statistics Service, Census of Agriculture

The Trend is not Confined to Field Crops

Florence medians, weighted by harvested acres).	Selected	1987	2007
	Crops	-Harvest	ted acres-
	Asparagus	160	240
	Lettuce	949	1815
	Tomatoes	400	820
	Apples	83	146
	Almonds	203	450
	Oranges	450	1113

Timing guide

- Intro/Section 1: 12 slides, 16 minutes (12:01)
- Section 2: 14 slides, 19 minutes (12:20)
- Section 3a: 15 slides, 24 minutes (12:44)
- Section 3b/close: 12 slides, 21 minutes (1:05)