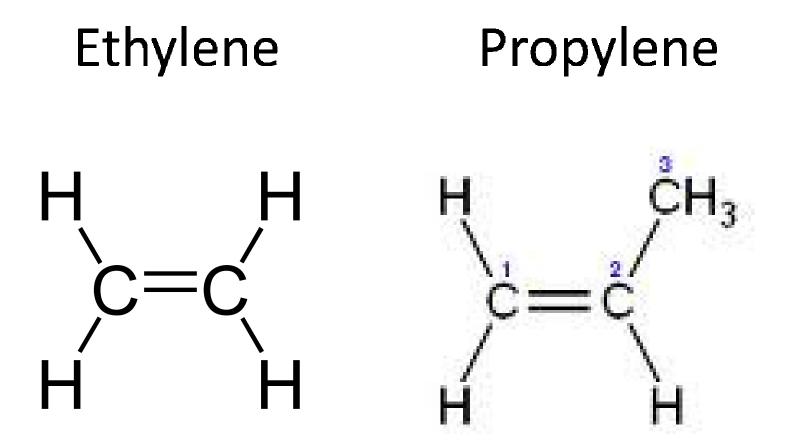
Major Chemicals and Plastics We Use Every Day

F803 Brian Martin

Topics


- History of chemistry, and significant discoveries in the 19th century. Nitrogen fertiliser.
- 2. Plastics and rubber
- 3. (a) Polyethylene and (b) Silicones
- 4. Chlorine containing chemicals and polymers.

Status in 1950

- Ethylene is not polymerised by free radicals under normal conditions.
- Does polymerise at high temperature and pressure, first manufactured in 1939. But the polymer quality is poor. Called LDPE.

Discovery

- Prof Karl Zeigler in 1952, trying to make some exotic compounds of ethylene and aluminum, found he had made polyethylene.
- Was not a free radical process, so he had discovered a new reaction and a new polymer. Became "Directed Polymerisation"
- Difficult to scale up, probably due to the complexity and hazard of the catalyst.
- 1955 Prof G Natta published on the structure of the polymer chain.

Development

- First polyethylene production in 1955.
- First polypropylene production in 1957.
- Zeigler and Natta shared the Nobel Prize in 1963.
- Ethylene-propylene copolymers made, are elastomers with outstanding durability.
- Continued research has led to 3 generations of improved catalysts.
- 2010: 100 billion kilos of polyethylene produced in the world, the largest volume plastic or chemical. This would occupy 1 acre about 20 meters deep.

Processing Videos

- <u>http://www.youtube.com/watch?v=bit-D1Nnfjl</u> Injection molding
- examples
- <u>http://www.youtube.com/watch?v=T01i_vp2mJE&NR=1</u> Blow molding
- Cf with thermoset. Milk bottles would be 1-stage blow molding
- <u>http://www.youtube.com/watch?v=uw9FYnBp5C8&feature=related</u> blown film extrusion
- Compare with fiber mfg.
- 3-layer laminate, 5 meters wide
- 10,000 kg/hour

ACC RESIN STATISTICS ANNUAL SUMMARY 2008 vs. 2007

PRODUCTION, SALES & CAPTIVE USE

(millions of pounds, dry weight basis)(1)

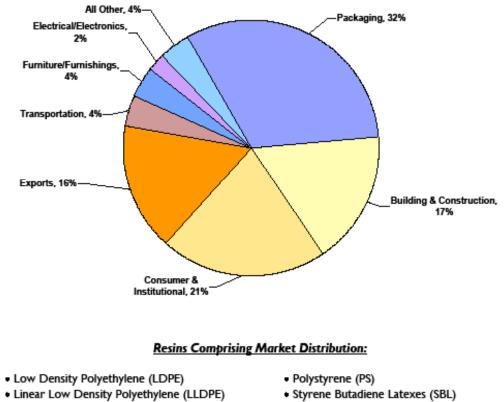
	Production			Total Sales & Captive Use		
Resin	2008	2007	% Chg 08/07	2008	2007	% Chg 08/07
Epoxy (2)	583	642	-9.2	603	653	-7.7
Urea and Melamine (3)	2,798	3,471	-19.4	2,848	3,448	-17.4
Phenolic (3)	4,233	4,838	-12.5	4,122	4,362	-5.5
Total Thermosets	7,614	8,951	-14.9	7,573	8,463	-10.5
LDPE (2)(3)	7,003	7,927	-11.7	7,143	7,999	-10.7
LLDPE (2)(3)	12,058	13,584	-11.2	12,385	13,379	-7.4
HDPE (2)(3)	16,247	18,222	-10.8	16,823	18,373	-8.4
PP (2)(4)	16,768	19,445	-13.8	17,235	19,361	-11.0
ABS (2)(4)	1,133	1,270	-10.8	1,111	1,273	-12.7
Other Styrenics (2)(4)	1,455	1,726	-15.7	1,407	1,670	-15.7
PS (2)(3)	5,220	6,015	-13.2	5,364	5,995	-10.5
Nylon (2)(4)	1,148	1,295	-11.4	1,164	1,302	-10.6
PVC (3)	12,789	14,606	-12.4	12,948	14,634	-11.5
Thermoplastic Polyester (2)(4)	8,159	8,745	-6.7	9,805	10,364	-5.4
Total Thermoplastics	81,980	92,835	-11.7	85,385	94,350	-9,5
Subtotal	89,594	101,786	-12.0	92,958	102,813	-9.6
	11.052	14.007	14.7	11 004	10.000	14.0
Other Resins (5)	11,952	14,007	-14.7	11,204	13,066	-14.3
GRAND TOTAL	101,546	115,793	-12.3	104,162	115,879	-10.1

(1) Except Phenolic resins, which are reported on a gross weight basis.

(4) Canadian and Mexican production and sales data included.

(5) Includes: engineering resins, polyurethanes (TDI, MDI and polyols), unsaturated (thermoset) polyester, and other resins.

Sources: Plastics Industry Producers' Statistics Group (PIPS), as compiled by Veris Consulting, LLC; ACC



⁽²⁾ Sales & Captive Use data include imports.

⁽³⁾ Canadian production and sales data included.

2008 Percentage Distribution of Thermoplastic Resins Sales & Captive Use by Major Market

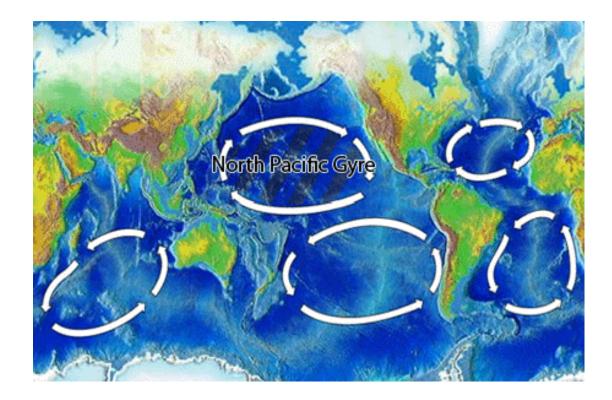
- High Density Polyethylene (HDPE)
- Polypropylene (PP)

- Nylon
- Polyvinyl Chloride (PVC)

SOURCE: ACC Plastics Industry Producers' Statistics Group, as compiled by Veris Consulting, LLC. Copyright © 2009 The American Chemistry Council. All rights reserved.

Success

- Great contributions by outstanding scientists for over 100 years; from Baekland to Carothers to Zeigler, both in materials and understanding.
- Allows highly functional, inexpensive molded parts, containers, films, fibers and coatings to be made which were not possible 100 years ago.
- Huge growth in production; polyethylene growing from almost nothing in 1950 to 100 billion kilos today.
- A huge technical success story.


The Cost

- Packaging is the largest application of plastics;
 used once and disposed.
- Leads to lots of waste for recycle or disposal.
- Not readily biodegradable or suitable for incineration.
- Ends up polluting the land and oceans.

Recycling

- Few pairs polymers are compatible when mixed.
- Different phases have poor adhesion to each other,
- Strength of a polymer mixture is usually poor.
- Mixed polymers have little value as scrap.
- Recycle #1 is thermoplastic polyester
- Recycle #2 is polyethylene.

Great Pacific Garbage Patch

