Major Chemicals and Plastics We Use Every Day

F803

Brian Martin

Topics

- 1. History of chemistry, and significant discoveries in the 19th century. Nitrogen fertiliser.
- 2. Plastics and rubber
- 3. Silicones
- 4. Chlorine containing chemicals and polymers.

2008 US Plastics and Fibers Production

(in 1000's of Metric Tons.)

Note: List is incomplete.

Polyethylene	16,016
Polypropylene	7,606
Polystyrene	2,368
Polyvinylchloride	5,801
Nylon fiber	728
Polyolefin fiber	1,109
Polyester fiber	1,240
Acetate fiber	27
<u>Total</u>	34,895

1 metric ton = 1000kg, so total = 34.9 billion kilos.

Ref: Chemical and Engineering News Online, July 6, 2009.

Chemical Analysis of the Total Production

Carbon	77.0%
Hydrogen	11.8%
Chlorine	9.4%
Oxygen	1.5%
Nitrogen	0.3%

•Only 5 elements are involved out of 94!

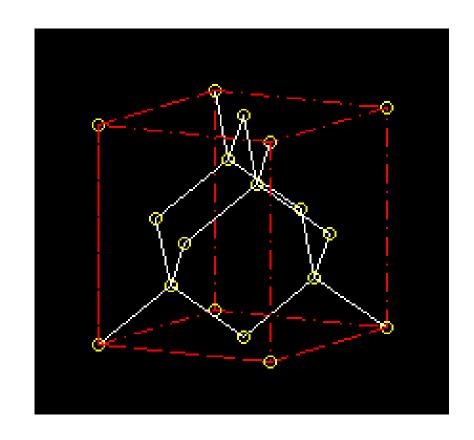
1909 Again!Leo Baekeland

- Born in Belgium, immigrant in New Jersey
- Knew of a reaction between phenol and formaldehyde, discovered in 1870's, which made a hard solid.
- Was trying to make a substitute for shellac.

Baekeland

- Learned how to slow the reaction down and control it.
- Could stop the reaction at a gooey, amber colored viscous liquid stage.
- Separated it from the water
- Mixed it with filler to make a dough
- Molded it, heat cured -> hard infusible solid.

Phenol-formaldehyde Reaction


(A) OH OH CH₂OH
$$+ CH2O \rightarrow (methylol formation)$$
(B) OH OH OH OH CH₂ OH + H₂O
$$(methylene bridge formation)$$

Henzene Ring H C C H Shorthand.

Heat Cure, 350°F/15 minutes

$$H_3C$$
 H_2C
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_7
 CH_7

Diamond lattice structure

Definitions

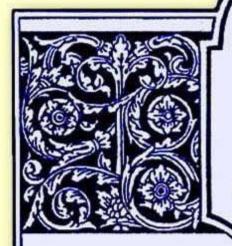
<u>Polymer</u>

Meros (Greek) part or portion Polymeres (Greek) having many parts.

Monomer One part

Thermoset polymer

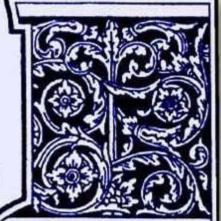
One that sets on heating and cannot be remolded.


Webster

Thermoplastic polymer

One that is not thermoset, and can be remelted repeatedly.

Properties


- The <u>first</u> synthetic material which could be molded into complex shapes
- Hard and strong
- Brown colored
- Electrically insulating, heat resistant and fire retardant
- Ideal material for electrical components, rapidly developing industry in 1909.
- Regarded as the first polymer.

BAKELITE

Trade Mark for the Phenol Resin Products manufactured under patents owned by

BAKELITE CORPORATION

THE MATERIAL OF A THOUSAND USES

Bakelite letter opener, probably around 1920, from Germany

This is a file from the Wikimedia Commons. Author Sarefo

Uses

- Used for light switches, plugs and sockets, insulating varnish for wire, encapsulant for coils, radio housings, circuit boards. (Health hazards for production workers.)
- Laminating adhesive for plywood
- Fiberglas insulation
- Metal primer,
- Heat shield for spacecraft and missiles

Developments in 1920-1940

- Phenol was substituted by urea for light color, but polymer is unstable to sunlight and moisture; used today as slow release fertiliser for lawns.
- Light colored articles could made by substituting phenol with melamine; useful for dinnerware and countertops (Formica).
- Over the last 30 years many applications of thermoset polymers have converted to thermoplastics, for lower cost of manufacture.